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Abstract— In autonomous driving, trajectory prediction re-
quires modeling the interactions between agents and maps,
hence enhancing the ego-planning. Most methods adopt an
encoder-decoder framework, where the encoder extracts fea-
tures and the multi-layer decoder predicts trajectories. How-
ever, these approaches typically treat all agents equally, over-
looking the varying levels of prediction difficulty among differ-
ent agents. To address this limitation, we propose a Uncertainty-
Aware Module (UAM) to capture and quantify the prediction
uncertainty for each agent. By incorporating uncertainty-
aware decoding, the module fixes the trajectories of agents
with lower prediction uncertainty early, allowing the model
to focus on more challenging agents. This approach not only
improves both accuracy and computational efficiency but can
also be seamlessly integrated as a plug-and-play module into
state-of-the-art networks. By adding UAM to Gameformer,
we outperform Gameformer in both accuracy and efficiency
on nuPlan Dataset. Additionally, we propose a Mixture of
Experts planning framework to integrate rule-based method
and Gameformer with UAM. Experiments on nuPlan show
state-of-the-art performance.

I. INTRODUCTION

Autonomous driving is a rapidly developing field, where

accurate trajectory prediction is crucial for safe and efficient

vehicle planning. One of the key challenges in trajectory

prediction is modeling the complex interactions between

multiple agents and the surrounding environment. Due to

the inherent uncertainty of agents, this process necessitates

multimodal trajectory prediction to account for a range of

possible future behaviors, as relying on a single trajectory

often fails to capture the full spectrum of potential outcomes.

To this end, recent methods have employed deep learning

techniques, particularly in the form of Transformer encoder

and decoder architecture, where the encoder extracts spatial

and temporal features from the agent history and the envi-

ronment, and the decoder predicts the future trajectories of

agents. In Transformer decoder, multiple decoding layers are

typically stacked, with each layer passing query content to

the next. Additionally, multimodal predicted trajectories are

obtained through a Gaussian Mixture Model (GMM) module

integrated within the decoding process, such as MTR [1] and

Gameformer [2].

Despite the success of such approaches, a significant limi-

tation remains: these models typically treat all agents with the

same level of importance, failing to account for the varying

difficulty in predicting the trajectories of different agents.
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Agents with simpler, more predictable behaviors are treated

with the same level of attention as those exhibiting more

complex, unpredictable motions, which leads to suboptimal

prediction performance and inefficient resource utilization.
To address this challenge, we propose a Uncertainty-Aware

Module (UAM) that quantifies the prediction uncertainty

of each agent, enabling the model to allocate resources

more effectively. UAM operates by analyzing the multimodal

predicted trajectories generated at each layer of the decoder,

along with the scores assigned to each predicted modality.

The distribution of different modal trajectories and their cor-

responding scores reflects the uncertainty of the prediction.

For agents with lower prediction uncertainty, the trajectories

are typically concentrated around a few modes, or one tra-

jectory’s score significantly surpasses the others. Conversely,

agents with higher prediction uncertainty exhibit more dis-

persed multimodal trajectory distributions, with scores that

are relatively close to each other. By modeling the divergence

of these trajectory distributions and normalizing the scores,

UAM provides a robust measure of prediction uncertainty. By

incorporating this uncertainty-aware decoding, our model is

able to focus its attention on more challenging agents, fixing

the trajectories of simpler agents early in the prediction pro-

cess. This approach not only improves prediction accuracy

but also enhances computational efficiency. Moreover, UAM

can be integrated as a plug-and-play module with state-of-

the-art trajectory prediction models, such as Gameformer,

leading to improved performance in terms of both accuracy

and efficiency.
We further extend this idea with a Mixture of Experts

(MoE) planning framework that integrates a rule-based

method with Gameformer enhanced by UAM. Experiments

conducted on the nuPlan [3] dataset demonstrate the state-

of-the-art performance of our approach, which outperforms

existing models in both accuracy and efficiency.
In summary, the contributions of this paper are as follows:

1) Uncertainty-Aware Module (UAM). We propose a

novel Uncertainty-Aware Module (UAM) that quanti-

fies the prediction uncertainty of each agent by mod-

eling the divergence of multimodal trajectory distribu-

tions. This module enables uncertainty-aware decoding

to allocate computational resources more effectively

and improve trajectory prediction and ego-planning.

UAM can be seamlessly integrated as a plug-and-play

module into existing models like Gameformer, leading

to enhanced performance in terms of both accuracy

and efficiency.

2) Mixture of Experts (MoE) planning framework. We
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develop a planning framework that combines a rule-

based method with Gameformer enhanced by UAM.

This hybrid framework leverages the strengths of both

methods to achieve improved planning performance in

autonomous driving scenarios.

3) State-of-the-art performance on the nuPlan dataset.
Through extensive experiments on the nuPlan dataset,

we demonstrate that our method achieves state-of-the-

art performance in trajectory prediction and planning

(include open loop planning, closed loop nonreactive

simulation and closed loop reactive simulation), out-

performing existing models.

II. RELATED WORK

A. Multimodal Trajectory Prediction

Multimodal trajectory prediction is crucial for autonomous

driving, given the inherent uncertainty of agents’ future be-

haviors. Early methods, leveraging CNNs in computer vision,

converted trajectory inputs and maps into rasterized images,

where trajectories were marked on grid maps. However, this

approach introduced significant redundancy, leading to high

computational costs.

VectorNet [4] was the first to use vectorized represen-

tations for trajectory prediction, greatly reducing computa-

tional overhead. TNT [5] treats trajectory prediction as a

target-driven problem, dividing it into three steps: target point

prediction, trajectory estimation based on the target point,

and trajectory scoring and selection. DenseTNT [6] builds on

this by replacing sparse anchor-based sampling with dense

sampling for improved accuracy. With the advent of Trans-

formers, encoder-decoder architectures have become popular

in trajectory prediction. For instance, SceneTransformer [7]

models interactions between agents, overcoming the limita-

tions of independent trajectory predictions. HPTR [8] designs

a hierarchical Transformer encoder to better encode historical

trajectories and map information. On the decoder side, MTR

[1] introduces modules for global intent localization and local

motion refinement, with specific queries assigned to different

responsibilities.

Despite these advancements, most methods do not explic-

itly model the complex interactions between agents’ future

trajectories. Gameformer addresses this gap by incorporating

a K-layer game-theoretic structure in the decoder, explicitly

modeling these interactions. However, it does not account

for varying prediction uncertainty across agents. To address

this, we propose the Uncertainty-Aware Module (UAM),

which quantifies each agent’s prediction difficulty, enabling

better resource allocation in interaction modeling. UAM not

only enhances interaction modeling in Gameformer but also

improves prediction accuracy and efficiency.

B. Learning-Based Path Planning

Traditional rule-based planning algorithms typically con-

sist of steps like global path planning and local path planning,

often using sampling, search, or optimization techniques.

Learning-based planning algorithms (also known as end-

to-end planning algorithms) directly map sensory inputs

to trajectory or control signals. These methods mainly in-

clude imitation learning [9][10] and reinforcement learning

[11][12]. Imitation learning constructs a dataset using ex-

pert trajectories and learns the mapping from this dataset.

PlanTF [13] improves the encoding of kinematic states by

introducing random dropout to force the encoder to learn the

fundamental relationships between actions, greatly enhancing

closed-loop simulation performance. PLUTO [14] is a frame-

work based on imitation learning, data augmentation, and

contrastive learning, which outperforms rule-based planners

on the nuPlan dataset.

Given that both rule-based methods and learning-based

approaches each have their respective strengths and weak-

nesses, we propose a Mixture of Experts model (MoE)

that effectively integrates the advantages of both paradigms.

By generating proposals from different methods, the model

leverages a scoring module to select the final output, combin-

ing the benefits of each approach to improve overall planning

performance.

III. METHOD

A. Definition and Design of UAM

Multimodal trajectory prediction involves utilizing the his-

torical trajectories of agents and map information to predict

their trajectories over a future period. Let X be historical

trajectories of agents, X = {e−th , e−th+1, e−th+2, ..., e0}
where th denotes the duration of the observed historical

trajectories, and et(t ∈ −th,−th+1, ..., 0) includes attributes

such as position coordinates, dimensions (length, width,

height), orientation, velocity, and other relevant information

at the given time step. Multimodal trajectory prediction

requires generating K possible future trajectories for each

agent, denoted by Y , over the prediction horizon tf , along

with predicting the probability P associated with each tra-

jectory.

Y = {s1, s2, ...sK} (1)

P = {p1, p2, ..., pK},
K∑

i=1

pi = 1 (2)

si denotes the i-th trajectory and pi is the corresponding

probability score.

For each agent, its prediction uncertainty can be evaluated

based on the K predicted trajectories and their corresponding

probability scores. Firstly, we use L2 norm to measure the

distance between different predicted trajectories. Let dij
denote the average L2 distance between the i-th and the

j-th predicted trajectories.Thus, an indicator s representing

trajectory uncertainty can be constructed as follows:

s =

K∑

i=1

K∑

j=1,j �=i

pipjdij (3)

This formulation integrates the spatial diversity of trajecto-

ries dij with their likelihoods pi and pj , effectively capturing

two key aspects of uncertainty. When the trajectories are

closely clustered, dij values are smaller, leading to a lower
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Fig. 1: Overview of our method. The Gameformer-UAM pipeline demonstrates the integration of the UAM module into the

Gameformer framework, with the overall structure following an encoder-decoder design.The Gameformer-UAM Network

Details highlight the specific network structure and MoE framework integrates both learning-based and rule-based approaches

for planning.

Fig. 2: Comparison of trajectory prediction distributions for

challenging agents and easy agents

s, which indicates low uncertainty. Conversely, when the

trajectories are more dispersed and the probabilities are

evenly distributed, s increases, signifying higher uncertainty.

Therefore, s serves as a comprehensive measure to evaluate

the prediction uncertainty for an agent. Fig2 shows two

examples of a challenging agent and an easy agent.

We give a theoretical proof when K=2 for this formula,

the indictor can be simplified as:

s = p1p2d12 + p2p1d21 = 2p1p2d12 = 2p1(1− p1)d12 (4)

When p1 is fixed, the term d12 represents the spatial diversity

of the two predicted trajectories. If the trajectories are close

(low d12), the uncertainty is low, and s becomes small. If

they are far apart, s increases proportionally to the distance.

When d12 is fixed, s is a quadratic function of p1. s achieves

its maximum value at p1 = 0.5, which indicates that the

probabilities of the two trajectories are equally likely and

there is no clear preference for one trajectory over the other.

As p1 → 0 or p1 → 1, s is close to 0 because one trajectory

is overwhelmingly dominant (or certain), and the other is

negligible. When K is larger than 2, this conclusion still

holds.

Considering that different speeds may lead to varying

distance differences dij , normalization is necessary for s.

We introduce a normalized indicator snorm to eliminate the

influence of speed variations and ensure consistency across

different scenarios.

snorm =
s

∑K
i=1 pili

=

∑K
i=1

∑K
j=1,j �=i pipjdij∑K
i=1 pili

(5)

where li represents the length of the i-th trajectory. This

normalization ensures that the uncertainty indicator s is

adjusted to account for differences in trajectory lengths,

making the measure more robust to variations in speed.

B. Integration of UAM into Gameformer

Gameformer introduces a novel approach to enhance au-

tonomous vehicle decision-making in complex environments

by integrating game-theoretic principles with Transformer

architectures, following the encoder-decoder framework.The

encoder effectively captures relationships between scene

elements to obtain scene context. The hierarchical decoder

iteratively refines predictions by considering the outputs

from previous levels, enabling nuanced modeling of agent

interactions. The decoder consists of N layers. At each

decoding layer, the model utilizes prior predictions and

shared environmental context to progressively enhance the

accuracy of interaction predictions. However, in each layer

of the decoder, each agent updates its trajectory based on the

predicted trajectories of other agents from the previous layer,

without accounting for the varying prediction uncertainties

of different agents.

By integrating the Uncertainty-Aware Module (UAM) to

the decoder layers of Gameformer, we calculate the predic-

tion uncertainty score for each agent at every decoding layer.

This score is then compared against a predefined threshold.
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If the score of an agent is below the threshold, the agent is

excluded from subsequent updates, and its position is masked

in the attention calculations. Conversely, if the uncertainty

exceeds the threshold, the agent undergoes regular updates

within the decoder. We update predictions and confidence

using masked attention. For implementation details, please

refer to Algorithm1.

Algorithm 1: Integration of UAM into Gameformer

Decoder with Confidence Scores
Input: Decoder layers N , Agents’ prior trajectory

predictions P prev, Confidence scores Sprev,

Environmental context C, Threshold τ
Output: Updated agents’ predictions P and

confidence scores S
for l ← 1 to N do

foreach agent i do
si ← UAM(P prev

i , Sprev
i , C) ;

// Calculate prediction
uncertainty score for agent i

if si < τ then
maski ← 1 ; // Mask agent i in
attention calculations

else
maski ← 0 ; // Allow regular
update for agent i

P new, Snew ← DecoderLayer(P prev, Sprev, C,mask)
; // Update predictions and
confidence using masked attention
P prev ← P new ; // Pass updated
predictions to the next layer
Sprev ← Snew ; // Pass updated
confidence scores to the next
layer

return P, S

C. Extention of UAM to MoE Planning Framework
Contemporary planning methods are typically divided

into two main categories: rule-based and learning-based

approaches. Rule-based methods provide high interpretability

and reliability, but they often face challenges in adapting to

dynamic environments and scaling effectively. Conversely,

learning-based methods excel in adaptability and scalability

but sometimes fall short in reliability compared to rule-based

methods.
To leverage the strengths of both approaches and mitigate

their respective limitations, we propose a unified prediction

and planning framework built on the Mixture of Experts

(MoE) paradigm. This framework generates diverse candi-

date trajectories using multiple planning methods and selects

the optimal trajectory via a score-based evaluation mecha-

nism.
The candidate trajectory generation process incorporates:

• Rule-based methods: such as IDM [15] , which offer

robustness and interpretability.

• Learing-based methods: such as PDM-Open [16] and

Gameformer-UAM, which combines advanced predic-

tive capabilities with adaptability.

By integrating these methods, the framework achieves

enhanced robustness and versatility in addressing diverse

autonomous driving scenarios.

As illustrated in Fig. 1, the MoE framework comprises

three main components:

• Multi-Planner Module: This module employs various

planners, including IDM, PDM-Open with varying pa-

rameters, and Gameformer-UAM, to generate a wide

range of candidate trajectories.

• Trajectory Prediction Module: It utilizes

Gameformer-UAM to predict dynamic environments

and refine trajectory candidates.

• Score-Based Selection Module: This component ap-

plies scoring standards from nuPlan, which account

for comprehensive metrics, to evaluate and rank the

trajectories. The highest-scoring trajectory is selected

as the final output, ensuring optimal performance.

This structured approach enables the framework to seam-

lessly integrate diverse methodologies, combining their

strengths to achieve superior performance, adaptability, and

robustness in complex and varied autonomous driving sce-

narios.

IV. EXPERIMENT

A. Experimental Settings

1) Dataset NuPlan is the world’s first large-scale au-

tonomous driving planning benchmark platform, which pro-

vides a comprehensive framework for training machine-

learning-based planners. It features a lightweight closed-loop

simulator and dedicated motion planning metrics. Therefore,

we use NuPlan for both training and testing. We extracted

63,687 scenarios for training and validation our model.

For evaluating planning performance, we conducted tests

on custom subsets, as well as the Test14-hard and Test14-

random, and compared the results with other methods. The

custom subsets consists of three types of scenes: highway,

roundabout, and intersection, with 2,000, 2,000, and 3,000

scenarios, respectively.

2) Evaluation metric For multimodal trajectory predic-

tion, common metrics include minimum Average Displace-

ment Error (mADE), minimum Final Displacement Error

(mFDE), and Miss Rate. mADE measures the smallest ADE

value among the K predicted trajectories, while mFDE rep-

resents the smallest FDE value. These metrics help evaluate

the accuracy and reliability of trajectory predictions.

Planning tasks are evaluated using diverse metrics. Open-

loop planning typically employs metrics like ADE and FDE,

similar to those used in trajectory prediction. In contrast,

closed-loop planning relies on metrics such as Success Rate,

Collision-Free Rate, and On-Route Rate. On-Route Rate

measures the proportion of the route where the vehicle

remains on the road, while Collision-Free Rate represents

the percentage of scenarios without collisions. Success Rate
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assesses whether the ego vehicle’s progress along the expert

trajectory exceeds a predefined threshold, such as 0.85. In

NuPlan, scenario scores are derived by comparing expert and

ego-driven trajectories, with higher scores reflecting better

planning performance.

3) Implementation Details We conduct experiments on

an NVIDIA RTX-4090 GPU. When training Gameformer

with the Uncertainty-Aware Module (UAM), the threshold

for UAM is set to 0.06. And the Gameformer model consists

of a 3-layer encoder and a 3-layer decoder. The model is

trained for 100 epochs with an initial learning rate of 0.001,

following a MultiStepLR schedule where the learning rate

is halved at epochs 10, 12, 14, 16, and 18. The batch size

is set to 128. The training process utilizes 63,687 randomly

sampled scenarios, each containing 1 second of historical

data and the corresponding 8 seconds of future prediction

trajectories. The dataset is split into a training set and a

validation set in a 4:1 ratio, resulting in 51,069 scenarios

for training and 12,768 scenarios for validation.

B. Trajectory Prediction Experiments

To validate the effectiveness of the Uncertainty-Aware

Module (UAM), we compared the performance of Game-

former with and without UAM in trajectory prediction. As

Gameformer and Gameformer with UAM provide predicted

trajectories for both the ego vehicle and other agents, we

utilize PlannerADE and PlannerFDE to evaluate the pre-

diction accuracy of the ego vehicle, and PredictorADE and

PredictorFDE for the accuracy of other agents’ trajectories.

Table I presents the performance metrics for an 8-second

prediction horizon. The results show improvement across all

metrics when using UAM, demonstrating that modeling pre-

diction uncertainty awareness enhances trajectory prediction

performance.

TABLE I: Comparison of Gameformer and Gameformer

with UAM for an 8-second prediction horizon. Lower values

indicate better performance.

Method Pl-ADE ↓ Pl-FDE ↓ Pr-ADE ↓ Pr-FDE ↓
Gameformer 0.9356 1.9324 1.1127 2.1717
Gameformer-UAM 0.8653 1.6493 1.0447 2.0773

We compared the FLOPs of Gameformer and

Gameformer-UAM, as shown in Table II. The result

demonstrates that incorporating UAM into Gameformer

reduces the overall computational cost.

TABLE II: Comparison of FLOPs per batch size between

Gameformer and Gameformer-UAM.

Model FLOPs (G) ↓
Gameformer 1.3512
Gameformer-UAM 1.3480

The Figure3 illustrates the masking proportions at different

layers of Gameformer when the threshold is set to 0.06. It

shows that the masking ratio increases with each successive

Fig. 3: Ratios of Masking at Different Decoder Layers with

a Threshold of 0.06 in Gameformer

layer, indicating that the predicted trajectories become pro-

gressively more deterministic as the layers deepen, with the

entire process converging.

C. Planning Experiments

In the planning experiments, we primarily conduct tests on

three datasets: custom dataset, Test14-hard [16], and Test14-

random [16]. For the custom dataset, we conduct simulations

using the most challenging reactive closed-loop approach.

We compare the performance of our method across highway,

roundabout, and intersection scenes against rule-based and

learning-based methods on key metrics such as success

rate, collision-free rate, and on-route rate. As shown in

TableIV, our method consistently outperforms others across

all evaluated metrics.

Additionally, we perform experiments on the Test14-hard

and Test14-random datasets from the NuPlan Challenge and

compare the results with several state-of-the-art methods.

The evaluation includes tests on open-loop planning, non-

reactive closed-loop planning, and reactive closed-loop plan-

ning. The results are summarized in TableIV. As shown

in the table, our method achieves the best performance in

both non-reactive and reactive closed-loop planning and also

obtains competitive scores in open-loop evaluation. The high

scores in closed-loop testing highlight the potential value of

our approach in real-world applications.

V. CONCLUSIONS

This paper introduces the Uncertainty-Aware Module

(UAM), a novel enhancement designed to improve trajectory

prediction and ego-planning in autonomous driving. By eval-

uating and adapting to the varying prediction complexities

of different agents, UAM significantly enhances the per-

formance of the Gameformer model, achieving lower error

metrics and reduced computational costs.

The integration of UAM within a Mixture of Experts

(MoE) planning framework further demonstrates its versa-

tility and effectiveness. Our method achieves state-of-the-

art results on both custom and NuPlan datasets, surpassing
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Method Scene Success Rate ↑ (%) Collision-Free Rate ↑(%) On-Route Rate ↑ (%)

IDM [15]
Intersection 54.10 88.63 88.43
Roundabout 39.55 77.37 82.45

Highway 72.29 91.67 93.05

PDM-closed [16]
Intersection 73.33 98.30 99.10
Roundabout 62.60 93.40 98.85

Highway 86.25 97.85 99.40

PDM-open [16]
Intersection 19.00 86.18 83.63
Roundabout 22.60 60.70 73.60

Highway 22.80 91.67 92.80

PlanTF [13]
Intersection 42.30 93.92 93.17
Roundabout 41.70 89.20 98.30

Highway 48.50 95.10 92.40

PDM-hybrid [16]
Intersection 73.40 98.25 99.07
Roundabout 63.70 95.35 99.45

Highway 86.50 97.90 99.45

Ours
Intersection 80.53 98.12 99.40
Roundabout 71.70 94.80 99.65

Highway 88.90 97.62 99.50

TABLE III: Comparison of success rate, collision-free rate, and on-route rate of different methods on various scenes.

TABLE IV: Performance comparison on the Test14-random

and Test14-hard datasets. Performance metrics for other

methods are taken from PlanTF.

Method Test14-random Test14-hard

OLS NR-CLS R-CLS OLS NR-CLS R-CLS

IDM [15] 34.15 70.39 72.42 20.07 56.16 62.26
PDM-Closed [16] 46.32 90.05 91.64 26.43 65.07 75.18
GameFormer 79.35 80.80 79.31 75.27 66.59 68.83
PDM-Hybrid [16] 82.21 90.20 91.56 73.81 65.95 75.79
RasterModel [3] 62.93 69.66 67.54 52.4 49.47 52.16
UrbanDriver [11] 82.44 63.27 61.02 76.9 51.54 49.07
GC-PGP [17] 77.33 55.99 51.39 73.78 43.22 39.63
PDM-Open 84.14 52.80 57.23 79.06 33.51 35.83
PlanTF [13] 87.07 86.48 80.59 83.32 72.68 61.70
Ours 81.19 90.79 91.57 75.32 71.01 76.96

existing approaches in success rate, collision-free rate, and

on-route rate.

In summary, UAM provides a strategic advantage for

autonomous driving by optimizing resource allocation for

prediction tasks. This work establishes a new benchmark for

trajectory prediction and planning.
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